Neuromuscular neutral zones response to cyclic lumbar flexion.
نویسندگان
چکیده
The in vivo lumbar spine of the anaesthetized feline was subjected to passive cyclic anterior flexion-extension at 0.25 Hz and 40 N peak load for cumulative 60 min duration. Displacement (or displacement neuromuscular neutral zones-DNNZ) and tension (or tension neuromuscular neutral zones-TNNZ) at which reflexive EMG activity from the multifidi muscles was initiated and terminated were recorded, for single-test cycles, before and for 7h after cyclic loading. Displacement and tension NNZs increased significantly after loading. The displacement NNZs decreased exponentially to near baseline by the 7th hour of rest. The tension NNZs, however, decreased to below the baseline by the 2nd to 3rd hour after loading and continued decreasing into the 7th hour. Peak EMG significantly decreased (49-57%) to below the baseline immediately after loading and then exponentially increased, exceeding the baseline by the 2nd to 3rd hour and reaching 33-59% above baseline by the 7th hour. EMG median frequency decreased after loading and then exceeded the baseline after the 3rd hour, indicating initial de-recruitment, followed by recruitment of new motor units. These findings suggest that the lumbar spine was exposed to instability for 2-3h after cyclic loading, due to concurrent laxity of the viscoelastic tissues and deficient muscular activity. A delayed neuromuscular compensation mechanism was found to exist, triggering the musculature significantly earlier and at higher magnitude than baseline, while the viscoelastic tissues were still lax. Thus, it is suggested that prolonged cyclic loading may compromise lumbar stability during the immediate 2-3h post-loading, increasing the risk of injury.
منابع مشابه
Neuromuscular neutral zones associated with viscoelastic hysteresis during cyclic lumbar flexion.
STUDY DESIGN The reflexive EMG from the L3-L4 to L5-L6 multifidus of the in vivo feline was recorded during application of single passive flexion-extension cycle of the lumbar spine. OBJECTIVE To determine the effect of viscoelastic hysteresis associated with a single-cycle flexion-extension and of increasing cycle frequency on the initiation and cessation displacement and tension thresholds ...
متن کاملNeuromuscular neutral zones response to static lumbar flexion: muscular stability compensator.
BACKGROUND The impact of six sequential static loading and rest of the lumbar spine on the changes in the neuromuscular neutral zones and thereby on spine stability was assessed. METHODS Six 10 min sessions of static load of a moderate level each spaced by 10 min rest were applied to the in vivo feline model. Test cycles of 0.25 Hz and at the same moderate peak load were applied before and ev...
متن کاملHigh-repetition cyclic loading is a risk factor for a lumbar disorder.
Epidemiological data suggest that prolonged exposure to cyclic lumbar flexion elicits a chronic neuromuscular disorder and disability in workers. This study provides a physiological and biomechanical assessment of various repetitions of cyclic lumbar flexion sessions as a risk factor for development of an acute neuromuscular disorder. An in vivo feline model was subjected to 10 minutes of cycli...
متن کاملHigh magnitude cyclic load triggers inflammatory response in lumbar ligaments.
BACKGROUND Cumulative trauma disorder is commonly reported by workers engaged in prolonged repetitive/cyclic occupational activities. Recent experimental evidence confirms that relatively short periods of cyclic lumbar flexion at high loads result in substantial creep of viscoelastic tissues, prolonged periods of its recovery to baseline together with a neuromuscular disorder and exposure to in...
متن کاملInteraction of viscoelastic tissue compliance with lumbar muscles during passive cyclic flexion-extension.
Human and animal models using electromyography (EMG) based methods have hypothesized that viscoelastic tissue properties becomes compromised by prolonged repetitive cyclic trunk flexion-extension which in turn influences muscular activation including the flexion-relaxation phenomenon. Empirical evidence to support this hypothesis, especially the development of viscoelastic tension-relaxation an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomechanics
دوره 41 13 شماره
صفحات -
تاریخ انتشار 2008